37,847 research outputs found

    Interview with Albert S. Peeling, June 3, 1995

    Full text link
    Albert S. Peeling was interviewed on June 3, 1995 by Michael J. Birkner & David Hedrick about his years as a student at Gettysburg College in the class of 1925. Peeling discusses his memories of the faculty as a history major and life at the college at the time, such as living quarters and athletics. Length of Interview: 57 minutes Collection Note: This oral history was selected from the Oral History Collection maintained by Special Collections & College Archives. Transcripts are available for browsing in the Special Collections Reading Room, 4th floor, Musselman Library. GettDigital contains the complete listing of oral histories done from 1978 to the present. To view this list and to access selected digital versions please visit -- http://gettysburg.cdmhost.com/cdm/landingpage/collection/p16274coll

    Dynamics of Cell Shape and Forces on Micropatterned Substrates Predicted by a Cellular Potts Model

    Get PDF
    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied.Comment: Revtex, 32 pages, 11 PDF figures, to appear in Biophysical Journa

    Development of a platinum-thorium oxide alloy for resistojet thruster use

    Get PDF
    Platinum-thorium oxide alloy for resistojet thruster showing increase in stress rupture lif

    The inhomogeneous evolution of subgraphs and cycles in complex networks

    Full text link
    Subgraphs and cycles are often used to characterize the local properties of complex networks. Here we show that the subgraph structure of real networks is highly time dependent: as the network grows, the density of some subgraphs remains unchanged, while the density of others increase at a rate that is determined by the network's degree distribution and clustering properties. This inhomogeneous evolution process, supported by direct measurements on several real networks, leads to systematic shifts in the overall subgraph spectrum and to an inevitable overrepresentation of some subgraphs and cycles.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    A Formal, Resource Consumption-Preserving Translation of Actors to Haskell

    Get PDF
    We present a formal translation of an actor-based language with cooperative scheduling to the functional language Haskell. The translation is proven correct with respect to a formal semantics of the source language and a high-level operational semantics of the target, i.e. a subset of Haskell. The main correctness theorem is expressed in terms of a simulation relation between the operational semantics of actor programs and their translation. This allows us to then prove that the resource consumption is preserved over this translation, as we establish an equivalence of the cost of the original and Haskell-translated execution traces.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    Majority-vote model on (3,4,6,4) and (3^4,6) Archimedean lattices

    Full text link
    On Archimedean lattices, the Ising model exhibits spontaneous ordering. Two examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition is observed in this system. The calculated values of the critical noise parameter are q_c=0.091(2) and q_c=0.134(3) for (3,4,6,4) and (3^4,6) Archimedean lattices, respectively. The critical exponents beta/nu, gamma/nu and 1/nu for this model are 0.103(6), 1.596(54), 0.872(85) for (3,4,6,4) and 0.114(3), 1.632(35), 0.978(104) for (3^4,6) Archimedean lattices. These results differs from the usual Ising model results and the majority-vote model on so-far studied regular lattices or complex networks. The effective dimensionality of the system [D_{eff}(3,4,6,4)=1.802(55) and D_{eff}(3^4,6)=1.860(34)] for these networks are reasonably close to the embedding dimension two.Comment: 6 pages, 7 figures in 12 eps files, RevTex

    Quantitative assessment of Earth’s radiation belt modeling

    Full text link
    The “Quantitative Assessment of Radiation Belt Modeling” focus group was in place at Geospace Environment Modeling from 2014 to 2018. The overarching goals of this focus group were to bring together the current state‐of‐the‐art models for the acceleration, transport, and loss processes in Earth's radiation belts; develop event‐specific and global inputs of wave, plasma, and magnetic field to drive these models; and combine all these components to achieve a quantitative assessment of radiation belt modeling by validating against contemporary radiation belt measurements. This article briefly reviews the current understanding of radiation belt dynamics and related modeling efforts, summarizes the activities and accomplishments of the focus group, and discusses future directions.Accepted manuscrip

    Quantitative assessment of radiation belt modeling

    Full text link
    The “Quantitative Assessment of Radiation Belt Modeling” focus group was in place at Geospace Environment Modeling from 2014 to 2018. The overarching goals of this focus group were to bring together the current state‐of‐the‐art models for the acceleration, transport, and loss processes in Earth's radiation belts; develop event‐specific and global inputs of wave, plasma, and magnetic field to drive these models; and combine all these components to achieve a quantitative assessment of radiation belt modeling by validating against contemporary radiation belt measurements. This article briefly reviews the current understanding of radiation belt dynamics and related modeling efforts, summarizes the activities and accomplishments of the focus group, and discusses future directions.Accepted manuscrip
    • 

    corecore